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STABILITY AND BIFURCATION OF ROTOR
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The equations of motion of a two-degrees-of-freedom mass in a magnetic bearing are
non-linear in displacement, with geometric coupling of the magnetic bearing coupling the
horizontal and vertical components of rotor motion. The non-linear forced response is
studied in two ways: (1) using imbalance force; (2) using non-imbalance harmonic force.
In the forced response, only periodic motion is investigated here. Stable periodic motion
is obtained by numerical integration and by the approximate method of trigonometric
collocation. Where unstable motion coexists with stable motion after a bifurcation of
periodic motion, the unstable motion is obtained by the collocation method. The periodic
motions’ local stability and bifurcation behavior are obtained by Floquet theory. The
parameters i.e., rotor speed, imbalance eccentricity, forcing amplitude, rotor weight, and
geometric coupling are investigated to find regimes of non-linear behavior such as jumps
and subharmonic motion.
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1. INTRODUCTION

Non-linear rotor motion in rotating machinery is commonly caused by the non-linear
characteristics of supporting bearings[1]. The bearings could be either conventional
mechanical bearings (ball, journal, or fluid-film bearings, etc.) or active magnetic bearings
which are electro-mechanical in nature. Various non-linear studies have been done on
magnetic bearings. Several resonant frequencies are obtained for a one-degeee-of-freedom
mass in a magnetic bearing where control current is only proportional to displacement,
i.e., the bearing has non-linear stiffness [2]. An unstable limit cycle resulting from
subcritical Hopf bifurcation of the rotor equilibrium position is caused by rotor gyroscopic
effects [3]. It is, however, stabilized by a non-linear feedback control. Eddy currents result
in lift and drag forces and cause coupling of rotor motion in the co-ordinate directions.
These are predominant in a non-laminated radial bearing, where they cause the Hopf
bifurcation of equilibrium position [4]. Multiple solutions are obtained at resonance, and
fractal boundaries separate stable and unstable regions due to geometric coupling [5].
Stable quasiperiodic motion is obtained for large geometric coupling values if the rotor
weight is neglected [6].

In solving non-linear differential equations, numerical integration is commonly used as
no closed form solutions exist for strongly non-linear systems. Numerical integration may
be inefficient for lightly damped systems. Moreover, the commonly used numerical
integration schemes such as Runge–Kutta may not give all unstable solutions. However,
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a numerical method such as the continuation method may be used to obtain
unstable solutions. The perturbation methods are useful for weakly non-linear systems,
and the approximate (semi-analytical) methods are useful for strongly non-linear systems.
The approximate methods that were used for rotor–bearing systems are the trigonometric
collocation method, harmonic balance methods, the shooting method [7], and the finite
difference method [8]. Here, the collocation method is chosen as it is easy to use, works
well with any intitial guesses, and gives both stable and unstable periodic solutions. Since
only periodic behavior is of interest here, the non-periodic responses are not investigated
using the collocation method.

The trigonometric collocation method is a frequency domain method. It was used to
obtain the non-linear frequency response curve of a flexible rotor in squeeze film dampers
[9]. For a similar system, the collocation method was used with Floquet stability theory
[10]. The collocation method was used to find the self-excited oscillations of a Van der Pol
oscillator [11].

2. ROTOR-BEARING MODEL

An active magnetic bearing system includes a stator, sensors, and a feedback control
system as shown in Figure 1. The stator has four pole-pairs. The commonly used control
strategy is to have independent axis control, i.e., two opposing pole-pairs on the x-axis
control the rotor motion in x-direction, and the other two pole-pairs are for y-axis motion
control. The feedback control system generates a current that is proportional to the
measured rotor displacement and velocity, i.e., a PD control is used. The controllers’ PD
gains for all four pole-pairs are taken to be the same. The rotor is one mass with two
degrees of freedom. For a magnetic bearing, when the rotor position is offset from the axes
of symmetry of the pole-pairs, the pole-pairs in the horizontal direction exert forces in both
the horizontal and vertical directions. This geometric coupling of forces was discussed in
reference [6].

The dimensionless equations of motion governing the unbalance response of a rotor are
[6]

x0= fr − fl + ax( ft + fb )+EV2 cos Vt, (1)

y0= ft − fb + ay( fr + fl )+EV2 sin Vt−G, (2)

Figure 1. Rotor magnetic bearing system.
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Figure 2. Locus of fixed points; P=1·1, D=0·11.

where the rotor co-ordinates x, y, and eccentricity, E, are non-dimensionalized with
respect to bearing clearance; the time, t, and rotor speed, V, are non-dimensionalized with
respect to natural frequency; G is the dimensionless rotor weight term; a is the geometric
coupling coefficient; and f’s are the magnets’ forces:

fr,l =(1/(4P)) [(13 (Px+Dx'))/(13 x)]2, ft,b =(1/(4P)) [(13 (Py+Dy'))/(13 y)]2,

(3, 4)

where P and D are the controllers’ dimensionless proportional and derivative gains,
respectively.

3. PERIODIC ORBITS

3.1.   

In this method, a periodic solution is approximated by a Fourier series:

{X(t)}=A1 + s
H

q=1

[A2q cos (qVs t)+A2q+1 sin (qVs t)], (5)

where Vs is the smallest frequency of interest, H is the number of harmonics of Vs . For
harmonic/superharmonic motion, Vs =V, and if a subharmonic with frequency a/b (a, b
are integers) is sought, Vs =1/b. This series is substituted into the differential equations
(1) and (2), and evaluated at 2H+1 collocation nodes that are equally spaced over the
fundamental period, T(=2p/Vs ). This results in 2H+1 non-linear algebraic equations in
the 2H+1 unknown A’s. For bad initial guesses, more collocation nodes can be chosen

Figure 3. Non-linear frequency response; P=3, D=0·11, E=0·03, a=G=0. Key: q, TCM increasing
speed; ×, TCM decreasing speed; ––, RK increasing speed; - - - -, RK decreasing speed.
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Figure 4. Floquet multiplier: real part, X-response; P=3, D=0·11, E=0·03, a=G=0. Key: –q–,
increasing speed; - - × - -, decreasing speed.

and a least squares algorithm used in solving the non-linear algebraic equations. Here, the
Levenberg–Marquardt algorithm for non-linear least squares implemented in an IMSL [14]
routine would be used.

3.2.  :   

The local stability of periodic motion of a non-linear system can be determined from
Floquet theory. The theory can also predict the type of bifurcation of the periodic solution
when a system parameter changes. In the following, the Floquet theory is given in brief
and the stability and bifurcation conditions are noted.

To find the stability of a periodic solution {X0 (t)} of the system

{X� (t)}= {F({X}, t)}, (6)

there should be at least one non-vanishing second derivative of {F({X}, t)} with respect
to any element of {X}. Let

{X(t)}= {X0 (t)}+ {dX(t)}. (7)

Substituting equation (7) into equation (6), expanding {F} in a Taylor series about {X0},
and retaining only linear terms in the disturbance {dX} gives

{dX� (t)}=[A(t)]{dX(t)}, (8)

Figure 5. Floquet multiplier: imaginary part, X-response; P=3, D=0·11, E=0·03, a=G=0. Key: –q–,
increasing speed; - - × - -, decreasing speed.
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Figure 6. Period-doubling bifurcation; P=1·1, D=0·03, G=0·03, V=1, a=0·05. ––, real; w, imaginary.

where [A(t)] is the matrix of first partial derivatives of {F} with respect to {X}, and is
periodic in time with period T. Equation (10) is a linear differential equation with periodic
coefficients. For this magnetic bearing system, analytical expressions are obtained for the
elements in matrix [A(t)]. If the columns in

[{dX1 (0)} {dX2 (0)} · · · {dXN (0)}]= [I]N×N (9)

are successively chosen as the initial conditions for equations (8), and {dX(t)} evaluated
at T, then the monodromy matrix is

[F]= [{dX1 (T)} {dX2 (T)} · · · {dXN (T)}]. (10)

Its complex conjugate eigenvalues, di , (Floquet multipliers) determine the local stability
of the periodic solution. Here, equation (10) is solved using numerical integration for one
period to obtain each column of [F], and in IMSL routine is used in solving for the
eigenvalues. If di Q 1, the solution is stable; di q 1, the solution is unstable; di =1, stability
cannot be determined from a linear analysis and non-linear terms have to be included.

When a unit circle in the complex plane is crossed by
a real eigenvalue on the positive real axis, it is a ‘‘cycle-fold’’ or ‘‘transcritical’’

bifurcation;
a pair of complex conjugate eigenvalues, it is a ‘‘secondary Hopf ’’ bifurcation;
a real eigenvalue on the negative real axis, it is a ‘‘period-doubling’’ bifurcation. The

‘‘eigenvalue’’ discussed in this paragraph may be called the leading Floquet multiplier since

Figure 7. Period-doubling bifurcation; P=1·1, D=0·03, G=0·03, V=1, a=0·16. Key as for Figure 6.
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Figure 8. Floquet multiplier; P=1·1, D=0·03, G=0·03, V=1, a=0·16.

it is the one which has the largest magnitude among all eigenvalues of the monodromy
matrix.

In rotordynamics, cyclic-fold bifurcation is associated with the jump phenomenon,
secondary-Hopf with quasiperiodic motion, and period-doubling with subsynchronous
motion.

4. RESULTS AND DISCUSSION

To get an idea of the magnitude of the dimensionless weight parameter, G, the fixed
points are obtained for a rotor–bearing system with no external forces (E=F=0) and
neglecting geometric coupling (a=0), using the trigonometric collocation method. (Note
that these fixed points could just as well have been obtained by solving a non-linear
algebraic equation in rotor position since velocity and acceleration terms are absent.) The
bearing’s feedback system has proportional gain, P=1·1 and derivative gain, D=0·11.
Here, in the collocation method, only one collocation coefficient and collocation node each
for x and y directions and zero initial guesses in each case are considered. The locus of
the resulting fixed points is plotted in Figure 2. This method is much simpler than using
numerical integration since in the latter method one has to filter many transient cycles
depending on the damping before a stable fixed point is reached. This is more so if zero
initial conditions are chosen. Furthermore, if zero initial conditions are chosen, numerical
integration predicts a minimum possible y=−0·666 (G=0·1) when in fact improving the
initial condition for y gives the correct minimum y=−0·889 (G=0·24). The
trigonometric collocation method gave good results with zero initial guesses up to G=0·23
(y=−0·877), but for the G=0·24 a better initial guess had to be chosen before the
solution converged to the exact result. Here, the value of y corresponding to the previous
value of G(=0·23) was chosen as the initial guess. Prior to changing the y initial guess,

Figure 9. Stable period-1, period-2, and unstable regions; P=1·1, D=0·03, V=1, a=0·05; ––, P-1–P-2;
- - - -, P-2–unstable.
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Figure 10. Stable period-1, period-2, and unstable regions; P=1·1, D=0·03, V=1, a=0·16; ––, P-1–P-2;
- - - -, P-2–unstable; W, P-4.

the number of collocation nodes was increased, but it had no effect in this case. For all
the values of G shown, the leading Floquet multiplier is within the unit circle; hence the
equilibrium positions are all stable.

Since rotor weight would be included in some of the simulations, the fixed point in the
absence of harmonic force would not be (0, 0). The fixed point varies with rotor weight
as given in Figure 2, and discussed in the preceding paragraph. Note that the fixed point
could be brought up to (0, 0) by using more bias current for the top pole-pair than the
bottom one and thus increasing the magnetic force in the positive y direction. While this
is more common than having same bias currents, it is not included in the present model
to avoid adding one more parameter into the system equations. Indeed having more bias
current for the top pole-pair than the bottom one may change the rotor response
characteristics, and needs to be investigated.

A frequency response curve can be obtained using the trigonometric collocation method.
Here, the motion is assumed to have the same frequency as the rotor speed and only one
harmonic. So, for x-motion, the collocation method would have only three coefficients:
one, for the constant bias, and one each for cosine and sine terms. The minimum required
collocation nodes (three) is chosen, and for simplicity all initial guesses for the coefficients
are taken as zeros for the first value of speed. Subsequent initial guesses were the results
from the previous value of speed. To verify the results obtained by this method, the
response is also obtained by Runge–Kutta numerical integration of the equations of
motion. Here also, for the first value of speed, the initial conditions were zeros, but for
subsequent values of speed, the initial conditions were the results from the previous value
of speed. The resulting frequency response curves obtained by both these methods, for both
increasing and decreasing speed, are shown in Figure 3 for a softening bearing. The

Figure 11. Period-4 orbit; P=1·1, D=0·03, G=0·03, V=1, a=0·16.
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Figure 12. Floquet multiplier with collocation periodic solution; P=1·1, D=0·03, G=0·03, V=1, a=0·16,
F=0·02–2.

results from numerical integration are shown with lines, and those from collocation
method with markers.

First, the results from numerical integration are discussed. For a non-linear imbalanced
system, when the frequency is increased, the response increases continuously until it jumps
to a peak amplitude and then the amplitude decreases continuously. Moreover, the
response for decreasing frequency is not the same as the one for increasing frequency, and
the region enclosed between jumps is the hysteresis region. For this system, as seen in
Figure 3, the hysteresis region is rather small, implying a weak non-linearity. Even though
the force from each pole-pair is strongly non-linear, the resulting force on the rotor in each
co-ordinate direction is weakly non-linear because there is a pole-pair on either side of the
rotor whose bias currents are the same and control currents are equal in magnitude but
opposite in sign. The magnetic bearings are designed this way to reduce the non-linearity.

It may be noted from Figure 3 that the linearized natural frequency of the softening
spring is approximately 0·82. This can also be obtained by linearizing the equation of
motion, which gives a linearized natural frequency of z(P−1)/P. It can be shown that
the magnetic bearing has hardening spring characteristics if 1QPQ 2, and softening
spring characteristics if Pq 2. The frequency response characteristics of a hardening spring
can be obtained similarly.

The results from the collocation method agree with those from numerical integration
except in the hysteresis region. While numerical integration gives only stable solutions, the
collocation method also gives unstable solutions. With the periodic solution obtained from
the collocation method, the Floquet multipliers are computed, and the real and imaginary
parts of the leading Floquet multipler are plotted in Figures 4 and 5. Note that Floquet’s
stability and bifurcation criteria are based directly on real and imaginary parts of the
eigenvalues, and not directly on magnitude and phase, as discussed in section 3.2.

When the imaginary part of the Floquet multiplier is equal to zero and the real part
becomes greater than one, then a cyclic-fold bifurcation that causes a ‘‘jump’’ results. This
is seen in Figures 4 and 5. The results from the collocation method are stable and agree
well with those obtained from numerical integration.

To study the effects of an external excitation force, F, whose amplitude is independent
of the rotor speed, the equations of motion (1) and (2) are modified as

x0= fr − fl + ax( ft + fb )+F cos Vt, y0= ft − fb + ay( fr + fl )+F sin Vt−G.

(11, 12)

In investigating the effects of the excitation force, F, rotor weight, G, and geometric
coupling, a, on the possible stable and unstable periodic regions, the other system
parameters chosen are: proportional gain, P=1·1 (corresponds to a hardening spring).
In simulations, a magnetic bearing with softening spring (Pq 2) characteristics did not
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show any period-doubling behavior. The other parameters chosen for the present analysis
are derivative gain, D=0·03 (corresponds to 5% critical damping), and rotor speed,
V=1, which is about three times the linearized natural frequency of 0·3. Two values of
geometric coupling, a, are chosen here: 0·05 and 0·16. The a=0·05 was the value obtained
from modeling in reference [6], and a=0·16 was the average experimental value reported
in reference [13].

First, the effect of F would be studied for two values of a and one value of G. The
non-linear equations of motion as well as the linear equations of motion with periodic
coefficients resulting from Floquet theory are numerically integrated. For G=0·03,
a=0·05, Figure 6 shows how the real and imaginary parts of the leading Floquet
multiplier varied with respect to the external force amplitude, F. For FQ 0·45, the
eigenvalue is within the unit circle, so the motion is stable period-1. At F=0·45, the
eigenvalue crossed the unit circle at −1 (imaginary part=0); hence it is a
‘‘period-doubling’’ bifurcation, and the resulting motion is stable period-2. The period-2
region ends at F=0·49, when the rotor motion became unstable. If a=0·16, the Floquet
multiplier is shown in Figure 7, where the period-2 region is much wider. The Floquet
multiplier in this case is also plotted as an Argand diagram in Figure 8, where F is implicit
and the eigenvalue moved from right to left when F was increased.

The stability results presented are based on the x-direction response. The same stability
characteristics but different amplitudes are obtained in the y direction; these are not
included here. Rotor weight causes a negative offset for y motion, and geometric coupling
is responsible for different x and y amplitudes. Note that bearing stiffness and damping
are the same in the x and y directions.

Figures 6–8 presented results for only one value of G(=0·03). Now, the combined effect
of F, G is studied for two values of a. For a=0·05, the period-1, period-2, and
unstable regions are plotted in an F–G diagram in Figure 9. Here, for values of F and G
below the solid line the motion is period-1; between the lines the motion is period-2; above
the broken line the motion is unstable. For a=0·16, similar results are plotted in
Figure 10. It is noted that at G=0·02 the rotor was stable for higher values of F for
a=0·16 when compared to that for a=0·05. This is due to the rotor operating at a speed
greater than the upper limit where jump occurs. A similar observation was made with
regard to the effect of geometric coupling on a frequency response plot, disregarding G
[6]. There is a period-4 motion for a=0·16, G=0·03, F=0·42; the orbit is shown in
Figure 11.

The Floquet multiplier shown in Figure 8 used the periodic solution obtained from
numerical integration. When the periodic solution is obtained from collocation method,
the Floquet multiplier is shown in Figure 12. Both show stable solutions for the same

Figure 13. Period-doubling bifurcation: collocation method; P=1·1, D=0·03, G=0·03, V=1, a=0·16.
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parameter (F) range. In the collocation method, Vs =1/2, and for convergence, the number
of harmonic terms H=10. This suggests that terms up to five times the running speed
are important in the rotor response.

When a period-doubling bifurcation takes place, the stable period-1 motion before the
bifurcation becomes an unstable period-1 motion after the bifurcation with the addition
of a stable period-2 motion. The collocation method can be effectively used here to obtain
both the unstable period-1 and stable period-2 motions after the bifurcation by choosing
different initial guesses for the collocation coefficients. The resulting bifurcation diagram
is shown in Figure 13, where the middle branch after bifurcation of the period-1 motion
is unstable.

5. CONCLUSIONS

The collocation method is easy to use to find stable and unstable periodic orbits in a
magnetic bearing. The orbits’ stability and bifurcation behavior are readily predicted from
Floquet theory. The motion of a rotor in a magnetic bearing undergoes cyclic-fold
bifurcation resulting in jump when the frequency is varied. The rotor motion undergoes
period-doubling bifurcation when the forcing amplitude is increased. The resulting
subharmonic motion is present for a range of forcing amplitudes and rotor weights. The
period-2 subharmonic range is small for small geometric coupling and is bigger for more
geometric coupling. In the latter case, the motion was period-4 for one particular forcing
amplitude.
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APPENDIX: SYMBOLS

A collocation coefficient
[A(t)] matrix of first partial derivatives of

{F}
D derivative gain
E mass eccentricity
F external force amplitude
{F} force vector
fr , fl , ft , fb forces of right, left, top, bottom

magnets
G rotor weight term
H number of harmonics in colloca-

tion method
P proportional gain

T period
{X} vector of state space variables
{X0} periodic solution
x, y rotor co-ordinates
a geometric coupling coefficient
di Floquet multiplier
{dX} perturbation of periodic solution
t time
[F] monodromy matrix
V rotor speed
Vs smallest frequency in collocation

method


